
Algorithms. -> How we solve algorithm efficiently.
-

Time Complexity -> How runtime scales ?

1 growth of running time w
.

r
.

t . in put size).

· Depende on input size.

obtain formula for function T(n) to capture growth of runing time wit

input size

· Access basic operation take constant time
.

Ignores constants and lower order terms.

(focus on dominating terms).

en) T(n) = < + [ 2
,

(2 + y
= (2n + c

,
+ ( = 0 (n)

.

-
Asymptotic time Complexity

0( % )

Nesteh loop :

-

if inner loop depends on outer loop
,
complexity is normally F(n2).

for i in range (1
,

1) :

for ; in range (in)
:

(n - 1) + (n - 2) + .... + (n - ) + .. - + (n - a)
I

for 1 outer iteration
.

= 1 + 2 + 3 + . .. + (n - 1)a 1 + 2 + 3 +... + m =M)
=m-1)

= (2)2

= O(n2



Tips

① Find formula f(k) for "number of iterations of inner loop during outer iteration I "

& Then sum up total cost ZE , f(k) .

Common growrth rate
I Solution Formulation

:

I

O(1) 1 : Analyze the inner loop
,

keep track of iteration

O ((logn (2) I

& (n0 ·3) I
· Determine the number of iteration the loop will

run

O(n)

O (logn)

!
I value.

I

f (nlogn) I

· Calculate complexity
,

capture dominate term.

O(nY I T(u)

O(nY I

#(2)
O(n")

Asymptotic Notation
.

· Big-O notation
-

Def : We write f(n) = Olg(a) if there are positive constant no and a

such that for all misno :

f(n) < 1 - g(n)
.

f(n) e 0(g(n))

f(n) = O(g(n)] means that



· f(n) grows at fast as glal

· g(n) is an asymptotic upper bound for f(n).

cg(n)

f(n) = (g(n)

IIIIIIII
en)- - -

Lemma [upper bound?

· If it exists
,

then fin) =0(x)>

(Eight upper bound)

In C
,

where c is a positive constanthe

Corollary [upper bound ?

· If im = 0
,

then +(u) = 0(g()

· if l =+ 8
,

then f(u) = Olg() does not hole

notation· -1

Def : f(u) = 1 (g() if there are positive constant no and a

such that for all n no :

f(ny > c · gan)
·

f(n) = l(g())
.

f(n) grows at least as fast as g(n >

gans is an asymptotic lower bound
.



f(n)

I
·
no

Lemma [ lower bound?

· If it exists
,

then fin) =(1)>
lower(Eight bound)

I C
,

where c is a positive constanta

Corollary [lower bound ?

· If im = + 0
,

then +() =I

· if l = 0
,

then f(u) =1(g() does not hol,e

mig-onotation

Ilef : f(n) = F(y() if there are positive constant no
,

2 and 2 such

that for all n no :

(, g(n) - f(u) < C .g(n)

f(n)E O(g(n))

finl grows like glu,



(2g(n)

---- c , g(n)

-
i
10

Lemma [Big-Theta ]

.

· If it exists
,

then fin) =0(x)>

C,2 ,

where , ahea positive constant.

Corollary [Big-Theta ?

·

If lim = C
,
for some positive constant c

,

the f() = olgy

-

----- -
-

Another view :

Assume that lim exists

· f(n) = 0(g(1)) if there exists a 30 s
.

t.

im

· f(n) = 1/g(as) if there exists 20 S
.

I
.

G
· f(n) = F(g(es) if there exist 2

,
210 S

.

E
.

/

Useful Case :

If im = the

f(n) EO(g(n)) but flas O(g(n))



If m
= 0

,

the

f (n) <119(n)) but flu) (g(n))

If = >0 (C#8)
,

the

f(n) EF(g()) .

Note : Higher complexities Gre asymptotic upper bound for lower Ones.

Some-usefulrelations :

For any two constants a
,

b 1

logan = Ollogon) = (Ign)
·

· 1 + 2 + 3 + .. . + n = [E
,

i = (2) (Arithmetic Sum).

· 1 + 2
2

+ 32+... +n = [i]
, i

=

= f(n3)

· 1 + 24 + 34 +... + n = [i]
,

i = 0(n4 +

1)

· (g) + 1g2 + ..
. + Ign = 1gn) = f(n)gn)

.

· I + 2 + (2) +... + (1)" = #(1) (Geometric Sum)
· For any OCTC1 Itr ++2+... pm =

1 - rh
+)

& = O(1)
1 - p

· For any-31 Itr+i+ ... +om

= =0
S

pet(y(n) ET f(u) = 0(g(n)) & f(n) = 1(g()

· symmetry
f (n) = O(g(n)) = g(n) = f(f(n))

f(n) = 0(g(n) = g(n) = 0(f(n) Converse also holds.

· Transitivity :

f(n) = 0(g(11) and geny = O(h(n1) => f(u) = 0 (n (a) same for 1 and 0.



(Assume all functive are positive)

· f(n) + g(n) = 0(max(f(n)
, g(n))

· f(n) + 0(f(n)) = O(f(n)

· if fi(m) = 0(g
, (n) & fa(n) = 0(9c (n))

=> f , (n) + fu(n) = 0(9
, (n) + 9a(n)) = O(max(5

, (n) + 92())

~ if f, (n) = 0 (9
, (11) & f z(n) = 0(9a(n))

=> f , (n) xfe(l) = 0 (9
,
(n) x 92(n))

.

Best time complexit :

These (n) : best time of the algorithm overaminput size n.

Tworst (n) : worst time of the algorithm over any input size 1.

-

↑

Focus on worst-case complexity for analysis.

-ExpectedTime Complexity

Expected/average running time :

ET (n) = [IPr(I) time (1) , for all case input I

Pr(l) = probability of input I

T(I) = running time of given input I

· An input probabilistic distribution model has to be assumed.

· For fixed input, running time is fixed.

⑨ Average time complexity is for if we consider running it

for a range of inputs,

what the average behavior is.

Kankom Algorithm :

· No assumption in input distribution
.

Fixed input
,

running time is NOT fixed ,

· Expected time is what we can expect
when we run the algorithm on any single input.



From Probability :

E(X) = [ [Pr(X = 1) : I

linearity : E(X ,
+ Xc) = E(X

,) + E(Xe)

Conditional : E(X) = E(X/Y) P- (Y) + E(X/NotY) (1-PrCY))
·

ex)
.

k = random (n)

for i inI to k

for j in I to k

ET(n) = z:, Pick = i) (ci =Zi =
,

in = 0114

es)
k = random (n)

if K log e then

for i =I to n :

Two cases
,

klogn & k > logn·

Pr(k <logn) = Log

P-(k > logn) : 1-

ET (1) = Pr(k <logn) T(k < logn) + Pr (k > logn)T(k)logn)

= ((n) + 11- )(c)

= O (logn)
.

Theoretical Lower Bound f(n) :

-

· if every possible algorithms worst-case time complexity is N(f(n)).

↑ lower boand f(u) for problem-D is Eight if there exist an algorithm
-

for problem- P whose worst case running time is O(f(n))
·



-earchProblem

Binary search

In database
, running multiple queries efficiently are needed.

Preprocessing time + Queries time

(time to prepare hata (time to execute query).

for efficient query)

er)
O Brute force ② Pre-sort

/

preprocess : O(1 I preprocess : O Inlogn

I
search : O Clogn

search : 0 (n)
I time : FInlogn) + mx Allogn)

time : 0(1) + mxf(n) = Olmn)
I

if m = n
: time = 0 (n 2) I

=f((n +mylogm) ·

I if men
,

time = OCalogn).

Binary array :

~each in soree

Input :

C sorted array # whose elements are in non-decreasing order as indicies increase.

a target key +

Output :

return the index of A whose element equals to +.

A = 10 3
,

3
,

7, 9
,

101
3

Start = 0
t = 9

Stop = 3

Not found
① min = 2

C I
Found

# [mid] = S

A [mid] < t

↓ start = mid + 1 =
3

L Stop = S

Eliminate the upper half.
T(E) ② mid = 4

Eliminate the lower half. A [mid] = 9

i) return 9.



Correctness of binary search.

① Base case :

stop-stare 10 returns None

stop-start = check HIstare1 and return.
3

⑧ Recursive Step will it
get

terminated ? (Problems get smallers.
&

The algorithm will terminate as the problem get smaller till we reach base case.

③ Correctness :

Assume all recursive calls return correct answers.

by inductive argument
,

the algorithm return correct answer

Best case complexity : O(I)

Worse case complexity :

stop-start

↓ f
T(E) +c

&
n -

Recurrence relation :
TCns =

1 ACI n[/
- &

Solve recurrence relation for time complexity :

① Unroll several time
-

T(n) = T(z) + c

= (T(E) + c) + c = T(E) +2

= +(E)+ 3

=...

Oice general formula
heterming the K in terms of input

T(n) = T() + 12
X or determing the # iteration in terms of inthea

Oure# of unrolls neched -> solve I

stop when = 1 unrolling terminates when reaching Th1)

2
k

= 1

k = 10924

① Plug into general formula.
-

T(n) = T( gen) + 10gen (



= T(1) + Clogy"

= 0(1) + 0(log21)
=Ellogn)

.

Note : Theoretical Lower Bound (TLB) for searching in sorted list is ellogn).

en) T(n) = T(E) + 1

T(n) = T(E) + n

= T(f) + E + n

----

= T() + n + E + ..
- +2 ,

= 1 = k = logy

So
,

i(n) = T(1) + n(t +.. - + Hog)2

-

OC1]

= F(n)

porting

&election Sort

ideas: At each iteration
, identify the smallest number in the remainder.

unsorted portion of array.

Put it at the end of the already-sorted portion.

Iterate till the end.

use to separate sortch/unsorted
L T(n)

=
n + (n - 1) +m - 2) + ...

= O(n2)
-

in-place sort



prove correctness usingninvariants

↓
is a statement that holds at themucof each iteration,

to show that it holds for each iteration
,

we first show it holds

for the base case
,

then argue that if it holds at the

end of (i-1)-th iteration, it will holds at the end of it

(inhuctive ideas iteration

loop invariant : after kiterations,

the first k numbers in A are sorce
,

and are smaller than all the

I remainder n-k numbers.

W

if it holds for any k
,

then after k = n-1 iterations
,

we get a soreeh array.

Base case : k = 0
,

loop invariant holds trivially

Inductive step : if it holds for k - 1
,

then wa identify the smallest from the remainder n-k + 1 numbers
,

which

must be the k-th smallese of the original array.

So after k-th iteration
,

loop invariant holds for K.

Time Complexity : T(n) = (n + ((n - 1) + c(n - 2) +.. . + 2

= O(n2)

mergeSore

idea : divide-and-conquer
,

optimal worse case time complexity

=

↓ I
I ↑7

L
=

Xh recursive
divide

=

↓
17 11 7-

& S
~ L

-> recursive combine/conquer1
17
-



Correctness :

O Base case : portion of array of sizeI is already sorzed.

② Work on smaller problem and will terminated.

③ Recursive call return correct output,
entire algorithm work.

Conquer :

input : given two sorted away
B and C

merge into a single sorted array

-
-
-

13 :
16 108 3 => 16108 764 3 2

Li 76 42

---
In code :

- if index of 13 one of bound , (in case when all elements of B <c).

I append (

Time Complexity :

⑪ Worse
case time complexity for Merge (B

,
2).

Tmerge = OCMy + Mc)
,

where no, he is length of B
,

C.

② Merge Sore
: from Merge

↓

T(1) = T(E) + T(E) + m = 2 T(E) + an

↑ ↑

from recurrence relation

of Merge Sore



T (n) = 2 T(E) + in

= 2(2T(E) + (E) + m = 4T(f) + 2 an

= 412T(E) + (E) + 2m = 8 T( G ) + 3 an

=
---

= 2" +(4) + kn
·

terminates when x = 1

k = logzn

so
,

T() = 21092" +(1) + c - n . 10ga2

= nF(1) + Inlogen

= O(ns + O(nlogn)

logn)

Note : merg2 Sor I not in-place .

has optimal asymptotic time complexing regardless of input shape.

three-wayMerge Sort

Divide into three arrays and then
conquer.

Recurrence relation :

T(n) = 37(5) + cn
.

-

QuickSelect

Order statistics : Kth order statistics is the kth smallest number

Cor rank k).

(a) Ist order statistics : min

nth " max

-th " median

pr-- th : p-th percentile,100



Input : givena numbers in an array A

Output : return the K-th order statistic of A.

ApproachD : modify selection sort

stops for K-th smallest

T(kn) -

Approach2 :

sort array
A and return Alk?.

T(nlogn) -

Approch B : Quick Select :

A >
Pivot P = At-1]

1
.

Partition
. -

S t - 1

N

I,/
-
choice of pivot affect

p = H[m]performance .

return m

2. Quick select intation
.

m = partition (A ,

0
, n) k is here

case 1 :
k = m + 1

,

return m ↓
-

/11161
case 2 :

k < m + 1, return QuickSelect (A
,

0
,

m
, k) M

↑
↑ eliminate here

M is too large
,

eliminate upper half.



Case 3: k7 m + 1
, return QuickSelect (A

,
m + 1

,

v
,

k)

↑

M is small
,
eliminate lower half.

Not Found

In-place Partition (A ,
S
,
t)

.

idea: two moving indexes

One is to traverse the array and one is to swap smaller elements

to the beginning.

l = S S
Complexity :

for r = s to +-2 do : S

O(t - S) -

if ALr] <p then ; I

swap ↑ [b] with Acr? I

e +t I

I

swap All] with Alt-1

/

return (e).

en) A = [ 13
,

2
,

3
,

9
,

4
,

67

① Partition
.

Syl t - 1

I
.

213 ,
2

,

3
,

9
,

4 6 !
↑

↑ -

r



l

↓
Alr = P

13 2 5 9 46

2. qu
~

l
↓ sway

2 13 3 946

↑
j

3.
↓

2 13 5 4 46 H [r] < P

↑

↓

2 j 13 9 46 swap

↑
-

↓4.
2 5 13 946

↑
-

↓

3
. 25 13 9 46 # 2-1 P

↑
↓

25 4 9136

↑
-

6. 254 6 13
,

9 Swap Alt]
and Alt-17

2 ->

< 6 6
.

hone
.

Time Complexity :

-

#1r) n - r/

↑
in each partition,

we either enter the left part of array
,

or right pare of

arraf

left right

T (n) = max(T(r - 1)
,

T(n - r)) + c
.,

r = m +1 is pivot order.

why "nax ? ↑b/ we are considering the worse case recursively
,

depends on value of r



Lucky case
-> eliminate exactly half each time.

T(n) = max (T(E)
,
TCE)) + n

= T(E) + 11

= f(n)

Worst case -> only eliminate one number at a time.

T(n) = T(n - 1 + cn

=--

= (n + c(n -1) + .. - + c . ) = ((( + . .. + a) = c O(nz) = 0(2)
.

M, Good splie" is the one such that the subarray is in balanced.

-

e
. g. pivot order re[F 1. X

+ his mean choose pivot

T(n) = +( **) + m = 0(1)
.

whose rank is [F, ] .

if always having good splits, then TCns = F (n).

↓
how to ensure good split

=>

pick a random number EA.

why ? 3/2 prob of chooing any number in A is in

↑(if rank (chosen number) <[F,) =1 - F) (n = <14 = 2
.

=> means that in expectation, every two times is a good split.

(Rand-Partition)

- choose

pirot with random

number in A



Expected intution--TimeComplexity

· in expectation, after every constant number of calls
,

there will be "good splie".

· "gooh split" will reduce problem size by at least I

T(n) = max (T(r - 1)
,

T(n - r)) + ch
.

Tgook (n) 1 Tgood( **) + In

= (n + Em +11 - - -

=i+ E2 + ....

Some Constant

= O(n)
.

↑ (good split) =

Expected cost of bad splic bounded by (t") Tgood(n) = Tgood(r).

Exported total complexity ET(n] -
> 2 good (1) = E(n).

Randomized Quick Sore :

-

In-place sort

expected time :
E(nlogn)

Worst case :
F (n 2).

3 > p

* much like
4

merge sort

↓ 12 ↓-*
but not a

balanced tree.

↳ un L
17 I 11-

L p is in the correct

I i place in relation to

the sorted array
,

so keep
>
T(a) = TCm - 1) + The - m) + an

. it unmov
.

Worst case : T(a) = T (n - 1) + <n = 0 (n2)

Best case : T(n) = 2 T(E) + < = 0 Inlogn)

Expected : ET(n) = #(nlogn) ·



Compared to Merge Sore

· inplace Sorting

faster practically (b12 acree with less node
,

a almost soreeh array

require less swap).

Binary Search-Tree

ReT

Each node has at most 2 children.

Each nobe contains at lease (key , Left , Right, Parent

A note is root if no parent.
A node is leaf if no children.

Complete binary tree

· Each node has two children

· Each level is filled,
all nodes are as left as possible.

Atproport :

2
. Key , Y

. key if i is in left subtree of 2.

.... --

if -- right ---

Tallest BST = 1

9aa
Shortest BST = logen

Operation in BST
:

-

O Tree-Search (root, k)-search for key k in treen.



Complexity : i(n) = ECtree height) = 0(n) = ↓ (logn)

② Find minimum/maximum .

Tree-min (u)

While (c . Left = Novel : (
-> get the left most child node

↓
do c = 2. left

Complexity : T(n) = ECh)
,

where his height of tree·

return x
.

③ Tree
- insert (2 ,

k)

insert k to the tree such that resulting tree is still BST.

! tree search
,

locate potential parent y for E.

F(h)
(

↳
Set z as child of J.

#(1)
↓

↑alanced BST

Good tree such that height h = logn.



by balancing the tree while doing insertion and deletion

Annotationtechnique to keep tree height low.

↳ right rotation
order is maintained.

/17
->

o - 10 a

C

O↑ left rotation
.

A

↓

In balanced BST
, operation can be done in Ollogy)

Allentqueries

B3ST - Select :

given a list of records whose keys are scored in a tree rooted at 2.

return the more whose key has rank k.

Why not Quick Select ?

=> may do it many times and need a data structure that support Selece

under hynamic change.

How ?

By argument the rank in a B3 ST.

store
U

.
Size = # notes in the subtree.

space needed isE,

2
. size = u

. left. size + U
. right ,

size +

I



↓ Algorithm

Thus
,

we can implement BST-Select in Allogn) time
,
faster than EC).

and support dynamic operation .

#tashing

Hash function : f : R -T X from one see to another.

· Deterministic

· "Uniform" mapping and few "collisions"
.

HashTable

Given a universe of elements U.

Need to store some keys and perform insere/ search/delete.

Membershipqueries and namicupdates

Approach 0 : use array to organize all keys .

pre-sore the array

Approach 1 : organize keys in doubly-linked list.

Approach 2 : organize keys in Balanced BST



Approach 3 : Direct address table (DAT).

Initialize table length to be 0 to
all keys.

ens
·

keys are from O to 99999 for Zipcode.

Not memory efficient

11
W

Hash table :

· U : universe

· T20 ... m-11 : a bash table of size m
.

· m (U)

· M To 12 around size of data.

· Hash function
.

Mapping :
h

:
V - E0

,

1, . .
.

,

m - 15.

h maps each element in universe to an index in the hash table.

· hCk] is the hash value of key K.

↓
store k in location h(k) of hash table

T

.

· Collision :

Multiple keys hash to the same slot

Collision happens when hth(y)for KEY EV.

Handle collision :

·Chaining
chain

a linked list of storch elements that hash to j.

·

open address

Operation :

· chained - hash - insert

O (1)
,

insert ca at the head of list TCh(2)].

Chainch-hash-search

· (len (TIh()]))
.



·Chained-hash-delete

· (len (TIncus])) .

Good Hash function spread elements into table uniformly.

average case :

n # elements

m size of table

AmFactor d = (average # of elements per linked list)

O (n) worst case complexity .

Simple uniform hashing assumptive :

-

any given elements is equally likely to hash into any of the m sloes in
T

.

Letnj be length of list TIj].

n = no + n , +... + 4m
- How ?

·

under assumption - 8 Ek ,
-

- kny set of keys

E[nj] = a= · X : = 1 if nckis = j

O otherwise

·

"j = Zi]
,
Xi

· EIXi] = P(h(ki) = j1) : in

· Ein; ] = El[i]
,
Xi] = Z, [i] : En

Under assumption,

expected running time :

· Search
if a = = 0(1)

.

ET (n) = F(1+) the operation take (1) time
.

worst case T(n) = E (n)

· Insert

T(n) = F(1)

· Delete

Ei(n) = 0 (1+
worst case T(n) = E (n).



Downside of Hashing
· Only support dictionary queries

membership query + insere/delete

· cannot query multiple elements whose total is close to something

canot do range query

· No locality

Eraphs

Graph G = (V, E).

V : a see of graph node (or vertices)
.

ECUXV : a see of graph edges.

· each edge (a, b) EE represents a certain relation between

the pair of graph nodes
,

a
,
DEV.

· Directed Graphs :

-

V is a finize state of nodes

E is A set ofmeepairs called edges.

· (a, b) + (b ,
a)

-

may be self loop (9,
9).

· simple graph : for any ordered pair , there can be at most one elge
--

in E
.

· i directedGraph

V is a finite see of nodes

E is a see of mordered pairs
-

· Ea , bj
, edege is subset of nodes V with cardinality 2.

No order for each pair.



(a, b) = 1 b
, a)

· impleGraph :

· No self-loops

At most one eage for each pai of nodes.

Edge direction self loop Opposite edeges

(a,
1) & (b, 9).

Directed Yes Yes
Yes

Unhirerzel No No No
.

· Given an undirected graph G = (V, E) .

is end-point of e.
· given edge e = (U, v) EE

,
u

,
v
-

e is incident is
· elege

->
node u ifa an empoint of e.

· Given undirected graph G = (V,
E)

,

the agree of a nobe VEV is

· deg (v) : = number of eages incident on v.

-

· Given undirected graph & = (V
,

E) with n = V1.

· OGeg(r) <n - 1

· [vev deg(u = 2 /El
n(n - 1)

maximum numbe of eage is
2

· IE) = 0 (n
.

· Unhirected graph is complete graph E)
-

there is on 2 edege between every pair ofdistince nodes in V.

IE)=)
(fully connected)

· Given a
directed graph G = (V

, E).

"degree (v) : = # of edeges entering v

Ondegree (v) := # of edges leaving V



Gegree (v) = inheg(r) + Outheg (v)

· Given a hirected graph F = (V, E)
,

with n = NV/

· <indeg(v)
,
outdeg(v) In

,
for any nobe VEW.

Ever indeg(v) = Ever Ondeg (v) = / El
.

IE1 = 0 (n%

· Given undirected graph G = (V, E).

the set of remors of rEU is the see of all nodes in V that share

an elge with V.

· Give directed graph.

the set of successors is the see of modes at the end of an eage leaving
-

the set of te
necessors is the set of nodes at the start of an elge entering V.

& Kath: from 1 to u is a sequence of one or more notes U = --. V : a

Sit there is analge between each consecutive pair of nobes in sequence.

Length of path = # of nodes-1 = # of edges in a path.

· Path ismpe If it visit each note once.

· A Exa is a path where the first and lastmohes are same

· Node U is muchable from nobe v if there is a path from ~ to u.

· in undirected graph
,
reachability is symmetry

,
U is reachable from

ET V is reachable from r

· in directed graph
,

reachability is not symmetry.

·Connectivity
, for unhireated graph is connected if every nobe is reachable from every

- -

other node. Otherwise
,

it is hisconnected
-

comeatedcomponent is 9 maximally - connected subset of nodes of V.

· given
undirected graph ,

it is a set CIV S
.

t.

1- any pairs U
, VEC are reachable from one another &

2. if UEC and ZEC
,

the U and a not reachable.

· connected = only I connected component.



~Representation :

① Adjacency matrix

assume V = Evo
,

v
, . . ., Ve-5

,

n = N 1
.

adjacency matrix of a graph is A nxn matrix

adj2i , j7=
(VisV) GE

otherwise

I

2
S

a-00 ,
I

1- 2 i I I③- ⑭ 100
o

if undirec graph , symmetry adj.
4 %

I

S 11 O

size : f ((VP)
I Pro :

eage query : adj 2i,
j] = = OCI)

I ·

support efficient elge queries

I easy to use

degree (i) : up . sumlad; [i: 1) OCIUI I easy to manipulate
I

(1, j)-th entry of A gives

I number of hops of length h

I
between Vi & vj

& Con :

take too much space FCIVI).

I
especially for sparse graph.

② Adjacency List

Each verexa has a lise
, recording its neighbor.

=> An array of IVI lises
.

adis[i] .
size = size of Adjlise for node V:

adj [i] = adjacency lise for note vi

a -> ② 11 )

217)
IEa 31> 11 Et

417) - 1)

Size : for each verex Vi
,
adjacency list adj[i] has size =

Geg (vi) if undirected leach elge storch twice)

outbeg (vi) if directed
. Leach elge storch once).



so size = @ ((V1 + (E1)
,

Pro :

1 optimal space

where OCIVI) for outer array 1 · Fast for degree query

ELIED for estal length of obses . 1 Con
:

slow for edge query
I

ease query : j in ahj [i] Oldegree (i)), · No linear algebra

manipulation.

begree : len (ad; [i]] F(1)
/

③ Dictionary - Set
chictionary)

change the inner list to set and Outer query to hash table-
- -

size : 0 (IVI + /E1)
.

edge query : j in adjti] O C

degree : Iladi[i]) & (1).

Res

Graph search :

Each nobe has three states :

o undiscovered.
-

· poaching (hiscovered but not explored).
-

·
visited (hone exploring)

.

-

At beginning
,
all modes are undiscovered.

·Search will choose next node to visit (explore) from list of peaching
node.

· If note is "visited"
,

then all neighbors should be "penhing" or visited":
- - -

BFS : choose the "obest" penting nodes



BFS(G
,

s)
.

source asidea
:

o all nodes areumscovered,
other than,

initialized

meding
· At each step :

· take the oldest pending node to explore
--

· mark all its undiscovered neighbors as eending.
-! mark this note as "visite"

-

Repeat until no more ending nodes

Implementation : FIFO hata structure (queue) for pending lise.

· Enquere (a)

·

Dequere (a)
)-> F(1) complexity

Use array)hash table to store status .

BFS will visit the set of nodes reachable from source note.

↓

Full BFS (visit all nodes).

- this will be called k times for k connected

components.

OLIVIS .

= ECIEl) each edge will explored once fordirected graph

twice for undirected graph.



Complexity : OCIVI + IE1).

Fur BFS
, complexity is FCIVI + ms)

,

where Ms = # edges in component of

(On a connectch
component containg source S.

and ms = OCIEl)
, upper

bounded

by # of all edeges.

&horcest Path for BFS

length of path is ( nodes in path
- 1).

Shoresse path from r To ~ is a path from u Tr ~ with

smallest possible length
-

shortese path distance is length of shortest path.

Property :
o Given any u

,
VEV

, if is reachable from u,

shortese path from u to has to be simple.

D
shortest path
--- ↓-·

visited ~
twich

subpath is also
· Any subpath of shortest path must be a shortest path.

shortes[

-
-

--
-

~ on shorces path of length I consists of a shortest

-

shortest path path of length (k-1) + 1 elage.

Finh shortest path from BFS :

· Stat from source .

· Find all nodes that are distance I from s

· Use them to find modes distance 2 from s,

---



Till we find all reachable nodes.

Intutively :

· The first time we discover a nobe encodes the fastest way to reach it.

Property of BFS :

For
anyK30,

· all nodes at histance k from sources are added to the "pending" queue before

any nobe of distance > k.

· nohes are "processed" in order of histance from the source.

↳ guarantee that the first time find a undiscorchnhe must be

the shortese path to reach the no he.

k

&

2&
2k + 1ER

I
k +

-dI

If
xv
~ is undiscovered

,
then this path is shortest

,
with distance k +

1

if v is alreadydiscovered
,

then there exist a shortest path S
.
[

distance must -k +1
.

Same complexity as BFS

O(IV) + IE1)
.

- - use↑ We can

this to recover shortest path

-
U is see to predecessor of
if v is discovered while visiting U.



Recover shortest path from BFS -> BFS tree

· Tree is connected graph T = (V
,
ES

,
IE) = 101-1

O

.
· Any two notes in

a tree
,

there is myone

& shortest path connecting them
-

=> Fire a
BFS-tree from source s

, for the uni, path from s toCul
-

U in T is E shortest path in &, its length is shortest path distance.

Full BFS will give us a collection of BFS-tree called Erest-

At any moment of BFS :

· the shortest path histance from source in queue are non-decreasing
-

the shortest path distance for nohes in
quene not diff more than 1

#k+ 17

the
queue.

DFS
-

choose the "newose" pending nodes

idea
:

all nodes initialized as discovered.

At each step :

take the newest pending nobe
-

explore all unhiscoverable nodes reachable

then mark this nuhe as id

Repeat untill no penting nodes.

Data Structure : Stack FILO.

I



↓ Implemented as

Recursive

Algorithm

DFS will visit all notes reachable

Complexity : OCIVI + /E1) · for full DFS.

-# of connecte component times

execute

For each note v, * predecessor is node v where through exploring edge

(4, 1)
Node was first discovere

. (status to penhing).

↓
collection of beges of the form (predecessor (v)

,
v) give DFS-tree

Start & Finish time :

Note states change from discovere toMuhing :
-> Start time

=> first time this nobe is discovered.

from empting to visited : -> Finish time.
-

=> exploration of this nobe is finish.

Call neighbors are visited except prodecessor?
.

(Increment by
when some not marked

as pending/visiting).

Property :

① Take any two nodes a and v
. Assume Scare [u] = Start[v].

Exactly one of the following two is true : explore all reachable froma
U before finish U.

- start [u? < StartIv] < finish [V] - finish [n]

StartIu] finish [4] C
O

O O

① -
Start IV] finish [v]

.



- Start (n] = finish [n] & Start [V] = finish [V].

W

start(()
o

finish [n] y
& ⑨ ①

Start (V] finish [V]
.

② If nobe v is reachable from u
,

but a is not reachable from v

then finish [V] finish [n].

V U

o-

000In
-

TopologicalSort :

Directed cycle is aChirech] path from a mode to itself.
-

&

Areatedacyclic graph (DAG) is a directed graph that does not

contain any
arreated cycle.

o9
↳00

...

Given a DAG
,

G : (V
, E)

,
topological sort of G is an ordering of V S

.

t.

for an eage (U,
USEE

,
U comes before r in ordering

Topological sores of same BAG are not unique.

Claim :
directed graph G : (V, E) a topological sort E) G is DAG

b/c if there is a cycle
,

no valid othering for nohes

0 (who comes first ?--

10,



(nodes with later finish time should come first).

-po-soreAlgorithm :

· First perform
DFS -> A(V + E)

· Output the order in decreasing owher of finish time. -> FCV).

#man- Ford

Wigneegraph G : (V
,

E ; w).

is a graph G = (V
, E) with eage weight map

W : E-> K.

I can be directed or undirected.

↑eathlength : total weight of all eages in path .

A shortestpath fromr to r is a path from re to r with minimum

length.

A shortest pail may not be unique ,
but all with same length-

Shortest path is not well defined if there is "he ative cycles".9
-

↓
↓ a cycle whose length is

Assume no "negative cycle" negative.
j

j'--
↑ ↑ithen there is always a shortest path that is ↑- I**
-

v-u

3

imple (no cycle at all

Forem :

~timal Substructure Property :

If (6 ,
42
, . . ., 4m) is a shorese path from U

, to Um
,

then
any

sub-path (Hi...., Mj) is also a shorse path.



I
Let &(4 , v) denote shortese path distance froma tor

Suppose (E
,

US is an elge, then
:

f (s, v) < S(s
,
z) + w1z, u)

.

-

shorces path from sto ~ using elge (E, v) as last elege.

And if 8(5
, z) = J(S

,
E) + W(E

,
2)

,
ther z is predecessor of r along with shortest

path to -

-
egle-source shortest path (SSSP) problem :

Given weighted graph G = (V,
E ; c) and source nobes

, compute the shortest path
distance from s to all other modes in V.

BFS work for unweighed graph ,

but not weights graph with hifferent elege
weight.

EdgeUpdate

Ballman-ford work foraweighted graph

complexity O(U . E)
-

Dijkstra work for graph withImitiveedge weight.

complexity @LCUE)/gVS and can be made to be O(VIgV + ES.

Both use update() operation

idea :
both algorithm keep track of the shortest path found so far

Cestimated shortest path)
.

see West = length of estimated shortest path source s to U.

At beginning lest = - & sest = 0
, iteratively uphate estimate.

Key : · during uphate process

·
estimate shortest path can only improve

· at least as long as true shortese path

once found shortest path ,itnot changed



· For each nobe u
,

we keep us

· predecessor along the shorese path from s to a

· n . est
, current estimated distance

.

er is a better predecessor than wis current predecessor

O(1)
-

new path
...........

......----------
olde vese

uphais (U2
,

1) :

current estimate

# O-> u I 3

O & inS I - ①
I

-X -& p 10 - > 6
-

I & Uz
2

- ter uphute-O Af
I

4

Theorem :

Let u & " be node.

Suppose current shorese path lest is correct.

·

there is shortest path from s to v
,

witha being vis predecessor.

=> After uphate (U,
2)

,
estimated shortese path histance to v is correct.

Bellman - Ford shortest we Inl compute
k + 1 hop via uphate) if

- path
↓

k hopchorese path are found.

um
Or k no his

u qv
S

k + 1 hop
guarantee ·

Note : if West is correct
,

then any further uphate will not change vest.

Algorithm : perform uphate for all eleges in E iteratively.

Loop invariant :
&

suppose we perform "update all edges"11 times.

Il



↓

All nodes whose shortest path from sources has k edges

are guaranteed to estimate correctly. ↓
perform V-1 times

to guarantee correct

for any graphs.
O(V)

)- > E . /V - 1)

Early stopping :
no histance change for all edges in a rouch => early stopping

Detect negative cycles : after Viteration of Bellman-ford
, if estimated distance still

decreasing ,

mean there is a negative cycle.

RiskstraAlgorithm

Noe all path need to uphated in each round.

idea : the algorithm explore the nodes in a greedy manner
,

in increasing distance

to the source .

↓
he

by J time we explore a node
,

algorithm guarantee to have correst

estinated histance.

· Keep track of a see of 1 of correct noles.

· At every step ,
add note outside of C with smallest estimated distance to C ;

update estimated distance to its neighbor.

C
ex) --- ---

I-X
EI O -

>

6
-

T

O*-......
2

O



Exit Path :

Anecepath through C is a path it : Smile from the sources to some

node M & C
,

called exit none. such that It consist of :
&

-

·

a path in C from s to some note W.

· followed by an edge (w, 4) (exit edge) to reach exit nobe u.

exit path exit no de

-
--- O outside (

I

S 1 : O ↓- 8
&

O O I

S -w
I I

O

L G
I

-
O-

Can exit path from 3) + (path from exit noke to 47

Loop invariant :

· At beginning of each while loop
,

histance in C is correct.

· For each nobe a outside C
,

west store the length of shortest exit path toa .

↓
proof :

· consider path it from to u
.

Lee y
be exit

nobe.

(s + o u)), (s +o 9) +/y to a)

· Since 19 to u) 30.

=>(s to u) > (s + o y) + 0

> length of shortest path from to I

=
Yest > U

.

est

=> Is to u) , U
.

est => Best must be shortest path histance
.

---- uphaich shortese path.
S -

U
- O -

S

I

-①

S
J③ &

-0-0
previous path

& S

---



After while loop
1

= c Very
,

then update neighbor of u.

using set

)- > O()

complexity :

-> V iteration

O(u) + O(r) xv = 0(V3
.

orjust
bottleneck

↓
Solution

: Priority Queue.
extract min : Fllogn)

change
- priority : #(logn)

extract and delete min

initialization : 0 ().

↓
Implemented using mineheap

f(y)

-> total cost : f(VlogV]

= [deg (v) = F(E)
.

total cost : O(ElogV)·

complexity :
&(IV+ E)/y V)

A crimAlgorithm

Trees : Undirected graph G = /V
, ES is a tree Ef

e it is connected

· it is a cyclic.
· If T = (V

,
El is a tree

,

then IE1 = /01-1.



Remark :

If T = (V, E) is a tree,

· there is a unique path between any two nohes.

· adding any other edgee to T will create a unique cycle containing e.

removing an edge will disconnect it.

A tree of G is any graph T = (V
,
E'CE) that is a tree

,panning

↓ for undirecte graph G = (V
, E).

Contains the smallest number of edges in E to

connect all nodes in

Weight of spanning tree T of a weighted graph is

-

· total weight of all eages in T
,

W(i) = Zeei -(e).

&Minimum spanning tree (MST) is a spanning tree with smallest weight.

·

may not be unique

·
all MST for a given graph have same # of edges.

Problem :

input : a weighted unhirected graph G

output : the see of eages in MST of G
.

Property : Given a MSTT of G = (V
,
E)

,
let etE be any eage in E but not in T :

=> there is a unique cycle (containing a in Tre

· e has the largest weight among
all edges in cycle C.

10 create a one cycle,oao uni,-Y 3 "Y Il F
has the largest weight.

E211X-O

Greedy Algorithm : Prins

idea : incrementally grow a partial tree TCS] LE connecting a



subset of nodes SCV.

· At beginning
,

T(S) is a sub-tree of Su MST of G

At each iceration
,

grow TCS's to include S = soices

S
.

t TIS) still a sub-tree of MST.

new mode is reached via a greedy choice of
a crossing-edge.

the greedy choice is the min weight elege connect

some note in deS to some no in U = V-S
.

-

--

17
S S 2 -o

.-

1 min weight outside s

Theorem : Let T be a sub-tree of a MST
. If e is a min weight

↓
edge connecting T to some vertex not in T

,
then TUEes is also a subtree of

MST.

Loop invariant : when each iteration grow the subtree
,

new tree is still

subtree of MST
.

When all nodes are connected
,

we get MST.

C &
9

CI---leE
LW

Implementation :

·

storing cost at node : each unvisited nohes v in U maintain v
.
cost

,
which is

the smallest weight of any edge from r to visit notes in 3.

↓
Priority Queue.



-> size = v

-> V iterations
-> Vlogh

-> Geg(Vi) ,

local : Evjev deg (Vj) = 2 E

-> ElogU .

Complexity : 0 ((V + E) log V)
·

nijkstra:
each note maintain best histance

from source to current node.

· when
inspecting a new eage (4,

2).

V
.

distance = min/v.

histance
,

U .

histance + weight(u, v))
.

im :

each nobe (not visited) maintains the

minimum weight of any edge to reach

a visited-node.

when inspecting a new edge 14,
V..

v .
cost = min (v . cost

,
weight (U, v))

·

Kruskal

idea :
and edges gradually in a greedy manner using smallest weights

,

while

maintaining what we have so far dees not have any mes.
↓

how ?

T by checking whether modes e,
S

Disjoint Set Forest :
are already connected.

·

represent a collection of disjoint Sets over a set of elements.

ens El, 5
, 65, 2

,
3
,
5 , 05

,

145;

· Operation
Union (4.%) : Union set containing U & Y

↓ · in-same-set (U, y) : return True/False if a & I are in the sure set.

take F(a(n)) time
,

where n is # objects in the collection.



· alo) : inverse Ackermann function :

grows very slowly

· ala) = O(ly")

· Asymptotically , grow faster than OCI)
,

in practice,

2) &(1).

used to keep track of connected component of a dynamic graph.

(((s)
· Nodes of CLs aredisjoint sees.

·
and edge (u, v) : union (U, u).

· check ifa and r are connect : in-same-see (U
,

r).

< E = R(v)

& (ElogE) = @CElog V] ·

if graph hisconnected
, algorithm produces. minimum spanning forest.

Kruskal vs
.

Prim
:

-

Prim :

Binary heap : E(VIgV + ElgV) (= FCElgU) if graph connected)-

Fibonacci heap : E(VIgV + E).

Kruskal :

O(V + ElyU)( = OCElgr) if graph is connected).

If graph is dense
,
prime with fibonacci heap is better.

In practice ,
Kruskal may be faster for smaller dense graphs.



Austering

· identify the groups in data

· loss minimization problem :

assigning each data point a color so that the distance between

close pair is maximized.

· Distance Graph

·

givenn data
points V = EP.

... Pr.
create a complete undirected graph & = /V

,
E) S

.

t for any Di Pj
,

there is

an edge (Pi
,

Pj) E

· the weight of an edge (PicPj) is W(Pi
, Pj) = dise (Pi

,
Pj).

Clustering -> create histance graph &

· run either Prims or Kruskai to compute
MST of G

,

T

· Delete largest edge in MST
,

obtain two components (clusters).

↓

We obtain k clusters for deleeing k-1 elges in MST.

Single-linkage - clustering (SLC)

we can perform Kruskal
, adding edges in ascending order of weights without

forming cycles ,
and stop till we have

a k number of components.

Complexity : OCElgv) = (UIgV) as E = OCVY

problem : chaining - effect .

&

complexity Theory

Many problems have bruze force solution takes exponential time.

Polynomial Time :

· If an algorithms worse case complexity is 0(nk) for some k
,

it runs in polynomial time.



Any polynomial is much faster than exponential for big 1.

Noe every problem solved in polynomial time.

What problems can and can not be solved in polynomial time ?

= Complexity Theory·

Ex : Eulerian problem : polynomial algorithm
,
"easy".

Hamiltonian problem : no polynomial algorithm,
"hard".

11

Reduction : Convert
"

Hamiltonian problem into Long Path problem in polynomial time.

We called this reduction.

↓
Problem A reduces to problem B means

"We can solve A by solving B".

Best time for Al best time for B + polynomial .

· If A reduces to
B
,

we say
B ia meleaseas hard as

A

PENP :

-

· The see of decision problems that can be solved in polynomial time is called
&-

· The set of decision problems with "hines" that can be verified in polynomial
time is called NP

.

-

· all of today's problems are in P.

· all problems in P also in

Is P = NP ? -> means that any problem given
"hine" verified in polynomial

No one knows.
time ca1

be solved in polynomial time.

NP-completeness
:

-

· Suppose (2 ,
... 4n) are bookan.

A 3-clause is a combination made by oring and negating three variable.

Given : m-clause over a boolen variables



Problem : Is there assignment of U
.

... Me which makes all clauses true

Simultaneously ?

No polynomial algorithm but easy to verify.

Look's Theorem
-

· Every problem in NP is polynomial-time reducible to 3-SAT.

· Corollary :

If 3-SAT is solvable in polynomial time
,

then all problems in NP are

solvable in polynomial time.

A problem is NP-complete if

·it is in NP ;

every problem in NP is reducible to it;

#andOptimization Problem :

NP-complete -> decisive problem
- > yes or 10

NP-hard -> optimization problem .

-> find the best


